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Abstract
[51] In this paper, a taxonomy of abduction in a wide sense and an
exact characterisation of probabilistic selective abduction is given. Two
important features of such inferences, namely accuracy and simplicity
of explanations and predictions, are described in detail. Afterwards, the
epistemic merits of simplicity are discussed. They are used to justify prob-
abilistic selective abduction in terms of an inference to the probabilistically
best explanation. By help of the theory of meta-induction and its account
of induction, this justification is expanded to abduction in terms of an
inference to the probabilistically best prediction. This expansion of the
theory of meta-induction to a theory of meta-abduction indicates that the
framework fruitfully accounts for important inference methods of science.
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2.1 Introduction

The theory of meta-induction allows for justifying inductive inferences based
on their past successes. Some have argued that this, finally, solves Hume’s
problem of induction, at least if one considers it in terms of optimisation (cf.
Schurz 2019; and Feldbacher-Escamilla under revision). However, there is also
another inference method which is widely-used in science and which is also
in need of epistemic justification, namely the method of abduction (cf. Peirce
1994b; Harman 1965; and Lipton 2004). The question of justifying abduction
will be addressed in the present essay. To be more precise, we are interested
in a particular species of abductive reasoning, namely the species of an infer-
ence to the probabilistically best explanation and prediction. We will show that the
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meta-inductive framework can be interpreted such that it allows for embed-
ding these inferences and applying the meta-inductive optimality results. By
this, meta-induction or, as we will call it: meta-abduction, can be not only em-
ployed to justify induction, but also to justify a species of abduction. [52]

Our investigation proceeds as follows: In section 2.2, we provide a brief out-
line of abductive inferences. In section 2.3, we characterise in detail the species
of abductive inferences we are interested in here, namely selective abduction
in form of an inference to the probabilistically best explanation or prediction,
where best is understood in terms of accuracy and simplicity. Since the epis-
temic value of accurate explanations and predictions is clear, but that of sim-
plicity is not, the latter needs to be explored further. This is done in section 2.4,
where an information theoretical argument in favour of simplicity is discussed
and used for fleshing out the notion of the species of abductive inference we
have in mind. As we will see, the epistemic justification of accuracy and sim-
plicity of abduction is guaranteed for an inference to the probabilistically best
explanation. However, abduction in the sense of an inference to the probabilis-
tically best prediction needs further steps of justification. As we will argue, the
theory of meta-induction allows to perform these steps. For this purpose, we
introduce the framework of meta-induction in section 2.5. There we also out-
line its vindication of induction. In section 2.6, we expand the epistemic justi-
fication of abduction as an inference to the probabilistically best explanation to
the case of abduction as an inference to the probabilistically best prediction. We
conclude in section 2.7.

2.2 Abduction

There are three major types of inference used in science and philosophy: de-
duction, induction, and abduction. Deductive inferences are truth preserving.
Inductive inferences are not truth preserving, but have conclusions containing
terms that occur already in the premisses. Finally, abduction is formally char-
acterised as a non-deductive inference with a conclusion containing also terms
that do not occur already in the premisses. It was Charles S. Peirce who first
discussed abductive inferences as a topic of philosophy of science and logic in
the broad sense. This formal aspect of abductive inferences was described by
him as follows: “An Abduction is Originary in respect to being the only kind of
argument which starts a new idea” (Peirce 1994b, p. 5.145). Clearly, this formal
characterisation does not provide much of a restriction. However, it is an im-
portant feature that distinguishes it from the other forms, deduction and induc-
tion. For this reason, we want to call it a characteristic of abduction in the wide
sense. To give an example of the different forms of reasoning, one can say that,
e.g., {∀xR(x)} ⊢ R(c) is a deductive inference, because it is truth-preserving
and does not (relevantly) introduce new terms. {R(c1), . . . , R(cn)}|∼ ∀xR(x) is
an inductive inference because it is ampliative and also does not (relevantly) in-
troduce new terms. And, e.g., the inference from ∃n

nR(x), ∃m
mW(x) to ∃l

l HR(x),

∃k
k HW(x), ∃j

j M(x) is an abductive one, since HR, HW , and M are terms (rep-
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resenting ideas) that do not occur in the premise set (‘∃n
n’ stands for ‘there are

exactly n things such that . . . ’; in the example below, we will use numerical
quantification with sortal variables x0, x1, . . . for expressing absolute frequen-
cies within different generations). [53]

Abductive inferences play a major role in natural science as they are widely
used for theory construction. Simplified speaking, by abduction one can in-
fer from empirically accessible data theoretical hypotheses that allow for a
more or less simple explanation of the data. Prominent is the example of Gre-
gor Mendel who inferred from phenotypic properties of plants, e.g. colours
red R and white W, laws of inheritance, e.g. the inheritance of recessive ho-
mozygous white HW , dominant homozygous red HR and mixed M traits.
He hypothesised about the existence of such an—at his times observation-
ally not accessible—theoretical structure. Based on such a structure, he could
explain, e.g., the frequencies of the phenotypic properties in different gen-
erations. E.g., that 50% of the plants of the mother generation (let us say
100—Mendel cultivated and tested in the years from 1856–1863 about 5,000
pea plants) were white (∃50

50x0W(x0)) and the other 50% of the plants were
dominantly red (∃50

50x0R(x0)), i.e. resulted themselves from breeding only red
plants over several generations, was interpreted by Mendel as having only
homozygous white and homozygous red plants in the mother generation:
∃50

50x0HW(x0) and ∃50
50x0HR(x0). He further hypothesised that by interbreed-

ing the white with the red plants 100% mixed plants arose in the first daughter
generation (∃100

100x1M(x1)) which, by the assumption that red was dominant,
allowed for explaining the fact that the first daughter generation was com-
pletely red (∃100

100x1R(x1)). By the same type of reasoning he could argue that
interbreeding the mixed plants results in 25% homozygous red (∃25

25x2HR(x2)),
25% homozygous white (∃25

25x2HW(x2)), and 50% mixed (∃50
50x2M(x2)) traits,

which predicted or explained that in the second daughter generation, due to
the dominance of red, 75% of the plants were red (∃75

75x2R(x2)) and 25% were
white (∃25

25x2W(x2)). This also explained how a phenotypical property that dis-
appeared in one generation, namely white, could return in another generation.

More generally, we can distinguish two aspects or kinds of abductive in-
ferences in the wide sense (cf. Douven 2018; Schurz 2008a; Aliseda 2006, p.46):
those generating new hypotheses and those aiming at determining the best hy-
pothesis from a set of available candidates. Abductive inferences of the former
kind are sometimes called creative abductions, and those of the latter kind selec-
tive abductions (see, e.g. Magnani 2000; Schurz 2008a; Feldbacher-Escamilla and
Gebharter 2019).

The account of Peirce is commonly subordinated to creative abduction.
Since Peirce coined the term for this form of inference, we call it also abduction
in the narrow sense here. Peirce provided the following very general inference
schema for it (see Peirce 1994b, 5.189):

1. The surprising fact, E, is observed;

2. But if H were true, E would be a matter of course;
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3. Hence, there is reason to suspect that H is true.

[54] Since abduction in the narrow sense is about generating new hypothe-
ses and theories, it concerns not only the context of justification of theories,
but also their context of discovery. Though most philosophers of science are
quite sceptical whether a general approach towards a logic of scientific inquiry
can be fruitful, there are accounts that allow for a systematic methodology
of abductive hypothesis generation in terms of common cause abduction for
generating hypotheses featuring new theoretical concepts on the basis of em-
pirical phenomena (cf. Schurz 2008a; and a generalisation of the approach in
Feldbacher-Escamilla and Gebharter 2019; but also Glymour 2018; for a histor-
ical case study, cf. Feldbacher-Escamilla 2019, sect.4).

Selective abduction, on the other hand, is often described as an inference to
the best explanation and most of the philosophical literature on abduction (in
the wide sense) focuses on this form of inference (see, e.g., Harman 1965; Lip-
ton 2004; Niiniluoto 1999; Williamson 2016). It is about selecting among a set
of possible explanations and predictions that one with most explanatory and
predictive virtues.

The exact relation between creative abduction (or abduction in a narrow
sense) and selective abduction is a matter of long-lasting philosophical dis-
pute. A reason for this is that Peirce’s criteria and their domain of application is
not entirely clear and he himself underwent some development regarding his
understanding of abduction (Mohammadian 2019, sect.2, distinguishes, e.g.,
between “the early theory from 1859 to 1890 and the later theory from 1890
to 1914”; and Hintikka 1998, p.511, speaks about “Peirce’s early perspective
on abduction” and “Peirce’s mature view”). Also proponents of the selective
abductive camp can be blamed for a similar fault. And a further reason for
the long-lasting dispute is that particularly adherents of inference to the best
explanation seemed to aim at endowing a long tradition by sloppily equating
selective with creative abduction. So, e.g., Harman (1965, p.88) claimed that
“‘the inference to the best explanation’ corresponds approximately to what oth-
ers have called ‘abduction’” and Lipton (2004, p.56) claimed that “Inference to
the Best Explanation has become extremely popular in philosophical circles,
discussed by many and endorsed without discussion by many more (for dis-
cussions see, e.g., Peirce 1994[)]”.

In stark contrast to the “identifiers” of abduction with inference to the best
explanation, there are strong “separationists” such as Hintikka (1998). Accord-
ing to them, abduction is not at all related to inference to the best explana-
tion. For Hintikka (1998), to explain is to perform a deductive activity, whereas
Peircean abduction is an activity of introducing new hypotheses into inquiry,
and since deduction and the introduction of new hypotheses are completely
different matters, also inference to the best explanation and abduction should
be understood as completely different forms of inferences:

“An explainer’s job description is [. . . ] twofold: on the one hand
to find the auxiliary facts A and on the other hand to deduce the
explanandum from them together with the background theory T.”
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(cf. p.507)

“Since the abductive reasoner does not always have at his or
her disposal explanations even of the known data, the abductive
inference cannot be a step to the known data to a hypothesis or
theory that best explains them.” (cf. p.509)

[55] Roughly, one can also describe the “separationist’s” argument as that of
abduction being a matter of the context of discovery, explanation being a mat-
ter of the context of justification, and since both contexts are separated, one
ought also to keep abduction separated from inference to the best explanation.

There are, however, also positions strictly within the spectrum spanning
from “identifiers” to “separationists”, namely those who agree that abduction
and inference to the best explanation are different, but nevertheless share im-
portant components. So, e.g., Mohammadian (2019) provides such a middle
ground by arguing for the formula “Abduction - The Context of Discovery +
Underdetermination = Inference to the Best Explanation”. Similarly, Aliseda
(2006, p.46) stresses that the “process side” of abduction consists of both, con-
struction and selection, and highlights the constructive part by help of the for-
mula “Abductive Logic: Inference + Search Strategy” (cf. p.49).

For the purpose of our investigation, we do not need to take a stance on
whether and how exactly creative abduction relates to selective abduction.
Rather, we need to characterise the kind of abductive inference (in the wide
sense) we are interested in and locate it within the general taxonomy. By this,
we want to provide a clear picture with sharp boundaries that mark for which
form of abductive inference our justification is fit and for which it is not.

Elsewhere, I have provided an approach to creative abduction in terms of
common cause/common origin reasoning (Feldbacher-Escamilla and Gebhar-
ter 2019). This essay aims at approaching the problem of how to justify selec-
tive abduction. As we have outlined above, the main idea of selective abduc-
tion is to infer from some evidence that hypothesis or theory from a set of al-
ternative hypotheses or theories, which explains the evidence best. In practice
as well as in theory, pretty much everyone agrees on this. However, differ-
ent accounts of selective abduction result from different ways of fleshing out
what is meant with best explanation. It is clear that best should be spelled out
in terms of explanatory virtues, but what exactly are these virtues? Harman
(1965, p.89), when introducing the notion of an inference to the best explana-
tion, considered that explanation to be the best, which is “simpler, which is
more plausible, which explains more, which is less ad hoc, and so forth”. In a
similar line, Lipton (2004) ranks explanations as better, if they are more plau-
sible and contrastive (in the sense of specifying and producing discriminating
evidence), and among those that are equally plausible and contrastive, being
better becomes a “question of comparative loveliness” (cf. p.90) which is de-
pendent of “precision, scope, simplicity, fertility or fruitfulness, and fit with
background belief” (cf. p.122).

An important problem of inference to the best explanation Harman/Lipton
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style is the question of its epistemic justification: What epistemic role do
simplicity, scope, etc., and loveliness in general have? Lipton (2004, pp.61f)
stressed the role of loveliness to be that of increasing understanding and by in
a scientific realist spirit, by linking “the search for truth and the search for un-
derstanding” also considered the epistemic role of loveliness to be established.
However, such a route of loveliness as a reliable indicator of truth or likeliness
is not open to anti-realist philosophers of science.

[56] An extreme way out of this solution is to set as a benchmark for an
inference to the best explanation something that expresses an epistemic value
per se, i.e. truth or likelihood. Such an approach would be an account of an
inference to the most likely explanation. However, as (Lipton 2004) has argued,
focussing on likelihood alone would render the account trivial in the sense
that we would simply re-state something that we wanted to explain:

“[There are] two more versions of Inference to the Best Explanation
to consider: Inference to the Likeliest Potential Explanation and In-
ference to the Loveliest Potential Explanation. Which should we
choose? There is a natural temptation to plump for likeliness. After
all, Inference to the Best Explanation is supposed to describe strong
inductive arguments, and a strong inductive argument is one where
the premises make the conclusion likely. But in fact this connec-
tion is too close and, as a consequence, choosing likeliness would
push Inference to the Best Explanation towards triviality. We want
a model of inductive inference to describe what principles we use
to judge one inference more likely than another, so to say that we
infer the likeliest explanation is not helpful.” (Lipton 2004, p.60):

So, the problem seems to be that selective abduction Harman/Lipton style
is explanatorily potent, but epistemically hard to come by. And selective ab-
duction in the sense of an inference to the most likely explanation is epistem-
ically justified, but explanatorily less (or even im-)potent. However, we think
that there is a form of selective abduction that can be epistemically accounted
for, i.e. which can be epistemically justified, and which is at the same time
explanatorily potent. The idea is to spell out the epistemic value of explana-
tory virtues such as simplicity in probabilistic terms. Since this account aims
at phrasing everything in probabilistic terms, we want to call this form of ab-
duction (in the wide sense) an inference to the probabilistically best explanation. It
is important to note that this form of selective abduction does take the likeli-
hood into account, however, it is no inference to the most likely explanation,
because it also takes other explanatory features into account, though these are
also spelled out in probabilistic terms. An approach along these lines is, e.g.,
outlined in (Williamson 2016).

Due to the structural identity of explanations and predictions (we subscribe
to the so-called structural identity thesis, cf. Hempel 1965, pp.366–376), we can
distinguish this form of abductive reasoning further into inference to the prob-
abilistically best explanation and inference to the probabilistically best prediction.
Figure 1 provides an overview of our taxonomy of abduction in the wide sense
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and indicates where to locate the species of abduction we are concerned with
in this essay.

Abduction

Creative Abduction

Peircean Common Cause . . .

Selective Abduction

Harman/Lipton Style Probabilistic

Likelihood General Probabilistic

Explanation Prediction

. . .

Figure 1: A taxonomy of abduction in the wide sense, where abduction in the
narrow sense amounts to Peircean creative abduction; the species we are inter-
ested in is abduction in the sense of an inference to the probabilistically best
explanation/prediction.

To briefly take stock, we have provided a taxonomy of abductive inferences
(in the wide sense). We have seen that in the literature there are accounts that
lump the different forms together (“identifiers”), there are accounts that keep
them strictly separate from each other (“separationists”), and there are inter-
mediary positions (like the approach of “Abduction - The Context of Discovery
+ Underdetermination = Inference to the Best Explanation” of Mohammadian
2019). However, since we focus on a particular species of abduction and aim to
provide an epistemological justification for it, and only for it, we do not need
to take a stance on this. Note, however, whereas Peirce’ “early perspective on
abduction” seems to support the identifiers’ position, his “mature view” rules
out such an identification, [57] at least with respect to the species of proba-
bilistic selective abduction, because in his later view he definitely ruled out
probabilistic considerations (thanks to an anonymous referee for pointing this
out to me):

“[In my early perspective on abduction] my conceptions of Abduc-
tion necessarily confused two different kinds of reasoning. When,
after repeated attempts, I finally succeeded in clearing the matter
up [i.e. in the mature view], the fact shone out that probability
proper had nothing to do with the validity of Abduction[.]” (Peirce
1994a, 2.102)

In the next section, we provide more details on abduction in the sense of
an inference to the probabilistically best explanation. In the subsequent section
(2.4), we will argue for its epistemic justification. Sections 2.5 to 2.6 are devoted
to the case of abduction in the sense of an inference to the probabilistically best
prediction.
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2.3 Inference to the Probabilistically Best Explanation

Now, what are particular characteristics of selective abductive inferences in the
sense of an inference to the probabilistically best explanation? Besides the for-
mal constraint of introducing new (theoretical) vocabulary, materially speak-
ing characteristic for this form of abduction is its validation of explanations.
So, usually an abductive inference has no single statement as a conclusion, but
laws and regularities that can be used in an explanation or that even form a
whole theory. In the case of Mendel’s abductive inference, given the premise
set outlined in our discussion of the example above, the laws and regularities of
a validated explanation might consist of assumptions about the traits (the ini-
tial traits being dominant or recessive and the daughter traits being dominant,
recessive, or mixed) as well as probabilistic reasoning based on assumptions
about the average number of descendants of each possible pair per generation.

What are the constraints for validating such an explanation? Abduction
in the sense of an inference to the probabilistically best explanation (see, e.g.,
Williamson 2016) is usually supposed to maximise the data’s plausibility (in
the sense of the likelihood) [58] and the hypotheses’ simplicity. Typically, also
further features such as scope, fruitfulness or non-ad hocness are put forward,
however, for a lack of space we will focus on simplicity as a proxy for such
virtues (the probabilistic reconstruction of the epistemic value of other virtues
such as scope, fruitfulness, non-ad hocness etc. is in line with that of simplicity;
for details cf. Forster and Sober 1994).

Regarding plausibility/likelihood, the parameter consists in the probabil-
ity of the premise P (also: the explanandum) in the light of laws and regularities
used in the explanation (the conclusion C or also: the explanans). The simplic-
ity constraint is considered to be necessary in order to rule out ad hoc expla-
nations. For, if one takes, e.g., scientists’ conditional degrees of belief Pr of
the explanandum P in the light of the explanans C as a measure for plausibil-
ity/likelihood: Pr(P|C), which is the likelihood of P given C, then it is clear
that choosing a C such that C ⊢ P maximises the explanandum’s plausibil-
ity/likelihood in the light of the explanans. In the simplest case one might set
ad hoc: C = P. However, what we aim at are not ad hoc explanations that
might be even trivial, but universal explanations. Since ad hoc explanations
usually turn out to become more and more complex with an increased number
of data, abductive validation of an explanation hinges not only on Pr(P|C),
but also on C’s simplicity. If we assume that there is some way of measuring
C’s complexity via a non-negative function c(C), then we can characterise the
validation procedure of an abductive inference as trying to maximise Pr(P|C)
on the one side, and minimise c(C) on the other.

Several remarks are in place: First, in order to remain applicable, in this
method the aim of maximising Pr(P|C) and minimising c(C) is to be under-
stood not in absolute terms, but in relative ones. We might aim at Pr(P|C) = 1
and c(C) = 0, but we will almost never achieve this goal. In particular, it is pre-
supposed that we exclude trivial abductive inferences to P itself (Pr(P|P) = 1
is maximal). As we have mentioned above, with an increased number of data P
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to be plausibly (in the sense of likelihood) explained by C usually also the com-
plexity of C increases (this is a case where scope opposes simplicity). And on
the other hand, reducing the complexity of C usually leads to generalisations
of C that are not in full agreement with P, for which reason Pr(P|C) decreases.
Since these two measures are intertwined in many applications, often finding a
C such that Pr(P|C) = 1 and c(C) = 0 is not achievable. This was highlighted,
e.g., also by Karl R. Popper, who claimed that the aim of increasing Pr(P|C)
“inadvertently but necessarily, implies the unacceptable rule: always use the
theory which is the most ad hoc, i.e. which transcends the available evidence
as little as possible [i.e. which sets C = P]” (see Popper 2002, p.61). However,
what is clearly achievable is a comparative task: Assume that the only available
potential explanantia are C1, . . . , Cn. [59] Then it holds:

If there is a i ∈ {1, . . . , n} such that for all j ∈ {1, . . . , n} \ {i}:
c(Ci) ≤ c(Cj) & Pr(P|Ci) > Pr(P|Cj)

or
c(Ci) < c(Cj) & Pr(P|Ci) ≥ Pr(P|Cj),

then infer from P by probabilistic selective abduction Ci.

(Abd)

(Abd) demands that in case there is an explanans Ci which plausibilises P bet-
ter (in the sense of increased likelihood), but not at cost of being more complex,
or which is simpler, but still not at cost of less plausibilising P than all the other
possible explanantia, that in such a case Ci is to be inferred from P. If one gen-
eralises this comparative validation to the set of all potential explanantia one
has thought of (see Williamson 2016, p.267), then one might regain an absolute
phrasing of selective abductive inferences in the sense of selecting the proba-
bilistically best explanation that is still applicable.

Second, Pr(P|C) and c(C) can be balanced in several ways. One might con-
sider, e.g., a combination of the form (1 − Pr(P|C)) · c(C) which is the product
of the inverse of the likelihood and complexity that is to be minimised, but one
might also think of maximising Pr(P|C)− c(C). These possibilities of balanc-
ing lead to different inferences in at least some applications. However, what is
important to note is that they still satisfy (Abd). This is also the minimal con-
straint we want to put forward for abduction and as long as a non-deductive
inference rule introducing new vocabulary satisfies it, we think it is fine to call
it an ‘abductive’ one. In the next section, we will consider another way of bal-
ancing that also satisfies (Abd).

Third, the two parameters c(C) (as a proxy for further explanatory virtues
such as scope, fruitfulness, non-ad hocness etc.) and Pr(P|C) are not suffi-
cient for providing a fully adequate account of selective abduction. Usually,
also the prior probabilities of the hypotheses used in an explanation are rele-
vant. E.g., if Pr(Ci) is very close to 0 and Pr(Cj) is high, then one will still tend
to opt for Cj instead of Ci, although Pr(P|Ci) might be greater than Pr(P|Cj).
For simplicity reasons, we restrict the application of (Abd) to cases with close
prior probabilities of the alternative hypotheses C1, . . . , Cn (other approaches
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like that of Solomonoff 1964a,b, link prior probabilities to complexity c). Also,
as is pointed out in (Schurz 2008a), other theoretical virtues of C as, e.g., use-
novelty, unification, etc. are typically considered to be relevant for abductive
inferences. Again, we restrict the intended application of (Abd) to cases where
these theoretical virtues are considered to be satisfied equally well. The reason
for this strong restrictions is twofold. First, some of these further parameters
might be reducible to the two we are proposing. So, e.g., regarding unification
and use-novelty, Forster and Sober (1994) provide reduction strategies which
might be cashed out be allowing for complex P and C (conjunctions of descrip-
tions of phenomena and hypotheses). In principle, one might even think of re-
ducing the prior probability of a hypothesis (Pr(C)) as relevant parameter via
inversely relating it to the complexity measure c(C) (as mentioned, this would
be along the lines of Solomonoff 1964a,b). [60] The second reason is that in this
essay we are only interested in an exemplary application of meta-induction to
abductive inferences. For this purpose, it suffices to show how the theory can
be applied in case one scores not only according to accuracy, but also according
to some theoretical value like simplicity/complexity. So, we should mention
that our aim is to theorise about a simple model of abduction, and we want to
stress that, clearly, this model has lots of limitations in comparison to the full
repertoire of abduction in the wide sense.

In this model of an abductive inference there are basically two main ingredi-
ents: Pr(P|C) and c(C). One might wonder why c(C) is relevant here. It is not
hard to provide an epistemic rationale for maximising Pr(P|C) in an inference
of C out of P, since it is a central aim of science and philosophy to provide good
explanations. In the traditional deductive nomological model of explanations, the
paradigmatic case of a good explanation consists of a deductively valid argu-
ment with true laws and auxiliary assumptions as premisses and the claim to
be explained as the conclusion of the argument (see Hempel 1965). Now, a
high likelihood of P given C approximates deduction of P from C for which rea-
son maximising Pr(P|C) also serves for approximating the paradigmatic case
of a good explanation (in this respect an inference to the probabilistically best
explanation is along the lines of an inference to the most likely explanation).
But what about c(C)? In how far does decreased complexity or increased sim-
plicity serve the epistemic goals of science and philosophy? Clearly, without
taking into account c(C) we would lack a criterion of selecting among a mul-
titude of potential explanations. But if it were just for reducing the number
of potential explanations then also a random choice would serve the aim. Ac-
cording to the argument above, not considering c(C) would allow for ad hoc
explanations. But what is the epistemic rationale of excluding ad hoc expla-
nations? One argument which is brought forward quite often is that ad hoc
explanations overfit the data and so in case there is some error in the data, ad
hoc explanations also fit errors. So, the argument is that since P might con-
tain false values or statements, validating explanations that perfectly explain
erroneous P are themselves defective and their explanantia C wrong. Since de-
creased complexity c(C) allows for avoiding overfitting, less complex Cs are
also less prone to fit errors. As the literature on model selection shows, this
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can provide a rationale for also taking into account c(C) in choosing among
accessible potential explanations.

To sum up, we are interested in abductive inference in the sense of an in-
ference to the probabilistically best accessible potential explanation. ‘Best’ is
understood as balancing two measures of an explanation of P by help of C:
the likelihood Pr(P|C) should be high and the complexity c(C) should be low.
An epistemic rationale for the former constraint results from approximating
traditional models of explanation. Such a rationale for the second constraint
might result from considerations of the literature on model selection showing
that c(C) influences C’s proneness of overfitting, and by this C’s proneness of
also fitting errors. In the following section we are going to make this argument
in favour of minimising c(C) explicit. [61]

2.4 Simplicity and the Akaike Information Criterion

One way of arguing for minimising c(C) is to postulate as aim of science and
philosophy not only to provide true explanations, but also non-ad hoc, univer-
sal, simple explanations. In this way, already by convention about the aim of
science and philosophy a demand of minimising c(C) follows. However, there
is also the possibility of trying to reduce the epistemic value of minimising
c(C) to the epistemic value of providing true explanations. The most famous
approach in this direction is an application of an information theoretical frame-
work to the problem of how to epistemically justify simplicity. The main line
of argumentation is as follows (see Forster and Sober 1994): (i) Data P might
be noisy and involve error. (ii) An accurate fit of an explanans C to the data
P fits also error, it overfits the data. (iii) Whereas a less accurate fit of C to P
may depart from error: Closeness to the truth is different from closeness to the
data. (iv) Fact: The more parameters an explanans C has, the more prone it is
to overfit P. (v) Hence: Simplicity in the sense of having less parameters may
account for inaccuracy w.r.t. data P in order to achieve accuracy w.r.t. the truth.
So, simplicity is instrumental for truth.

This argument is valid along general lines. But what about the truth of the
premisses? Considering applications of the abductive methodology to the nat-
ural sciences, premise (i), the assumption of error in the data, is a very natural
assumption. But then also premise (ii) and (iii) are straightforward: Assuming
that P contains errors one only has a chance of achieving the truth by deviating
from P. Intuitively and qualitatively speaking, premise (iv) is also straight-
forward: If an explanans is complex, it allows for fitting a simple as well as
a complex explanandum. If an explanans is simple, it might fit a simple ex-
planandum, but it cannot fit a complex one. But clearly, this is an argument
too coarse-grained in order to be convincingly applied for quantitative con-
siderations regarding minimising c(C). However, there is also a much more
fine-grained version of premise (iv) stemming from the literature on model se-
lection and curve fitting—here we focus on the latter, since it became a quite
influential approach to the epistemic value of simplicity (see Forster and Sober
1994). Note, however, that due to this setup we also focus on a very particu-
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lar notion of simplicity/complexity only, namely parametric simplicity (for other
notions of and approaches to simplicity and how to generalise the account pre-
sented here, cf. Kelly 2007).

For illustrative purposes, we will make only very simplified considerations
here. The idea of model selection is that, given a data set X = {x1, . . . , xn},
one is looking for a curve F = { f1, . . . , fn, . . . } that adequately fits X. Now,
it is assumed that X might contain errors, so X deviates from the truth T =
{y1, . . . , yn, . . . } (see premise (i)). [62] Clearly, the perfect choice would be
F = T, regardless of X, but since only X is available to us, we have to base
our choice of F on X. It is also clear that for any data set X with n = |X| ele-
ments, choosing as F a polynomial of degree n − 1 allows one to perfectly fit
X. One can always find parameters an−1, . . . , a0 such that for all x ∈ X there
is a z ∈ R: ⟨z, x⟩ ∈ F, given F(z) = x = an−1 · zn−1 + · · · + a1 · z1 + a0. So,
n parameters (an−1, . . . , a0) allow for defining an F that perfectly fits X. If F
has less parameters than n, then it is possible that there are cases where one
cannot fit F perfectly to X. So, the number of parameters of F determines pos-
sibilities of perfect fitting. However, fitting X perfectly might deviate from the
truth T, whereas fitting X imperfectly might allow for achieving the truth T
(see premisses (ii) and (iii)).

Clearly, whether an inaccurate fit brings us closer to the truth or not de-
pends on the exact specifics of error, namely the distance between X and T. If
there were no error (X ⊆ T), then a more accurate and complex model would
be better off than a simpler but less accurate model. However, a famous result
of Hirotugu Akaike shows that on average (i.e. in estimating) simplicity mat-
ters. Forster and Sober (1994) have transformed Akaike’s result to the philo-
sophical debate of problems surrounding curve fitting. The result is the follow-
ing one (see Forster and Sober 1994, p.10): The estimated predictive accuracy
of the family of a model F given some data X, which is also called the Akaike
information measure according to the Akaike information criterion, is determined by
(this criterion serves only as a proxy here and one can draw the same epistemic
lesson about the value of simplicity by other information criteria like the Bayes
information criterion):

AIC(F, X) ∝ log(Pr(X|F))− c(F) (AIC)

Where c(F) is the number of parameters of F (i.e. the degree of the polynomial
F plus 1) and F is supposed to be most accurately parameterised regarding X
(i.e. it is the/a polynomial of degree c(F) that is closest to X in terms of the sum
of squares of the differences).

Note that the idea of the Akaike information criterion is to select an F such
that the estimated accuracy regarding the truth T of the family of F given some
data X is maximised. Now, as (AIC) tells us, maximising AIC(F, X) is twofold:
It consists of maximising the log-likelihood of F given X while at the same time
one needs to keep an eye on holding complexity or the number of parameters
of F low.

This framework has a wide range of applications (cf. Forster and Sober
1994), however, here we are interested on cashing out (AIC) also for reduc-
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ing the value of simplicity of the abductive methodology presented before—
namely the value of c(C) in (Abd)—to the epistemic value of gaining truths. At
least at first glance it is quite straightforward to implement (AIC) into the ab-
ductive methodology outlined above: The data set X is to be identified with the
premise of the abductive inference P, the explanandum. And the conclusion
of the abductive inference C, the explanans, is to be identified with the curve
that tries to fit X, i.e. F. The result is an Akaike-motivated characterisation of
abductive reasoning: Assume that the only available potential explanantia are
C1, . . . , Cn. Then it holds [63]:

Ci can be inferred from P by probabilistic selective abduction iff
for all j ∈ {1, . . . , n}:

log(Pr(P|Ci))− c(Ci) ≥ log(Pr(P|Cj))− c(Cj)

(In case more than one Ci satisfy this constraint
one might freely choose among them.)

(AIC-Abd)

According to this characterisation, every inference to an explanation is ab-
ductively permitted if it manages to get the best balance between likelihood
and simplicity. Note that since Pr(P|C) ∈ [0, 1], log(Pr(P|C)) ∈ (−∞, 0].
Furthermore, in principle the complexity of C might have no upper limit (F
might be a polynomial of arbitrarily high degree), so c(C) ∈ [0,+∞). So,
in trying to maximise Pr(P|C) and minimise c(C) one also tries to maximise
log(Pr(P|C))− c(C).

More generally, (AIC-Abd) also satisfies the constraint (Abd), and since
(AIC-Abd) is stronger than (Abd), it is also more specific. What is important
for our argumentation is that the implementation of (AIC) in agreement with
(Abd) in the criterion (AIC-Abd) seems to do the job of reducing the value of
simplicity (low c(C)) to the epistemic value of gaining truth.

In this sense, selective abduction as an inference to the probabilistically best
explanation is epistemically justified. However, selective abduction can not only
be used as an inference to the probabilistically best explanation, but also as an
inference to the probabilistically best prediction. And the question is how one
can epistemically justify such an abduction, if one is missing future data for
figuring out what is the best balance between accuracy and simplicity. In the
following, we aim at outlining how the epistemic justification of abduction
in the sense of inferring an explanation can be expanded to a justification of
abduction in the sense of inferring a prediction. For this purpose, we first need
to introduce the framework of the theory of meta-induction.

2.5 Meta-Induction and the Justification of Induction

Meta-induction is a theory which overcomes David Hume’s problem of induc-
tion. It generalises Hans Reichenbach’s best alternatives approach (cf. Schurz
2008b, sect.2). Reichenbach was the first to propose to consider the problem
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of induction not with respect to the strong requirement of proving that induc-
tive methods are successful, but with respect to the much weaker, but epistem-
ically still highly relevant, requirement of proving that inductive methods are
the best methods accessible to us for making predictions. Since our best meth-
ods might be still predictively unsuccessful, this requirement is weaker than
the one put forward by Hume. Reichenbach argued that if we cannot realise
the sufficient conditions of success, we shall at least realise the necessary con-
ditions. In order to spell out this idea, he defined a world to be predictable, if it is
sufficiently ordered to enable us to construct a series with a limit. [64] Since the
principle of induction leads to the limit, if there is a limit, convergence with the
principle of induction is a necessary condition to be successful (cf. Reichenbach
1938, pp.348f; cf. also the explication in Feldbacher-Escamilla 2017, p.421).

This solution to the problem of induction or this vindication of induction is
very simple, but also narrow in the sense that it holds only for ordered worlds.
Since we do not know whether our world is ordered in this sense or not, the
more challenging task is to vindicate induction also for the case of an un-
ordered or—according to Reichenbach’s terminology—“unpredictable” world.
Exactly this is done within the approach of meta-induction (cf. Schurz 2008b):
Here the idea is that if we shift our application of induction from the level
of object-induction about the outcomes of an event sequence to the meta level
about the success of such methods, one can generalise the Reichenbachean idea
also to cases of an unordered world. Reichenbach himself suggested already
such a move from the object to the meta level (1938, p.353), but his reasoning
was incomplete in the sense that it remained open how an adequate predic-
tion of the limit of a sequence on the meta level of success can be linked to an
adequate prediction of the limit of a sequence of event outcomes on the object
level (this criticism was put forward particularly by Skyrms 2000, p.49). It was
not until 70 years after Reichenbach’s proposal that this gap could be closed by
the approach of meta-induction of Schurz (2008b).

In the following, we outline foundational parts of the framework of meta-
induction (for a comprehensive discussion cf. Schurz 2019; and Feldbacher-
Escamilla under revision). Its most central part are so-called prediction games.
A prediction game consists of the following ingredients:

Events, Predictions, and Truth.

• Ys
t : Y1

1 , Y1
2 , . . . ; Y2

1 , Y2
2 , . . . are infinite series of events.

• Y = ⟨⟨y1
1, y1

2, . . . ⟩, ⟨y2
1, y2

2, . . . ⟩, . . . ⟩ are quantified representa-
tions (within the interval [0, 1]) of the true (or actual) out-
comes (or values) of the events (event variables) to be pre-
dicted: ys

t ∈ [0, 1].
• Fi: F1, . . . , Fn are the prediction or forecasting methods of n

predictors or forecasters.
• F = ⟨⟨⟨ f 1

i,1, f 1
i,2, . . . ⟩, ⟨ f 2

i,1, f 2
i,2, . . . ⟩, . . . ⟩ : 1 ≤ i ≤ n⟩ are the

predictions or forecasts of the single events within the interval
[0, 1] of the predictors or forecasters 1 ≤ i ≤ n: f s

i,t ∈ [0, 1]
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Given these ingredients, we define a prediction game by the following 4-tuple:

Prediction Game.
G is a prediction game (with the true values Y and the predicted
values F) about events of type(s) I ⊆ N iff

G = ⟨ {⟨s, t, Ys
t ⟩ : t ∈ N & s ∈ I},

{⟨s, t, ys
t⟩ : t ∈ N & s ∈ I},

{Fi : 1 ≤ i ≤ n},
{⟨s, i, t, f s

i,t⟩ : 1 ≤ i ≤ n & t ∈ N & s ∈ I} ⟩

[65] I is a set of indices of the event types in question (I ⊆ N). E.g., a
prediction game with I = N amounts to a task of predicting everything (as-
suming that the set of all properties is countably infinite); I = {3, 4, 5} might
filter out, e.g., a prediction game on weather where events of type 3 might be
about sunny, events of type 4 might be about rainy, and events of type 5 might
be about cloudy days; one might put forward probabilistic constraints for con-
necting the predicted values f 3

i,t, f 4
i,t, f 5

i,t as well as for the outcomes y3
t , y4

t , y5
t

such that they are non-negative and sum up to 1 and for the ys one typically
assumes that they are ∈ {0, 1} (for all i, t ∈ N); given these constraints, one
can interpret such a prediction game also as a probabilistic one. On the other
hand, setting I = {3} filters out a simple prediction game on all events of
type Y3 (whether it is sunny or not or to which degree it is sunny etc.). If I
is a singleton and the specific event type is irrelevant, then one can just omit
super-indices. One can speak then also about a ‘prediction game’ simpliciter
(this notion of a prediction game allows also for probabilistic settings and gen-
eralises that of Schurz 2008b). In most parts of what follows we only have in
mind such simple prediction games with |I| = 1.

Relevant for the evaluation of predictions within a prediction game are es-
pecially the values of y and fi (see figure 2): The closer fi,t is to yt, the better
the prediction of i. And the closer the fi,t’s are to the respective yt’s, the better
i is a predictor in general.

y1 y2 y3 y4 y5 . . .

f1,1 f1,2 f1,3 f1,4 f1,5 . . .
...

...
...

...
...

...

fn,1 fn,2 fn,3 fn,4 fn,5 . . .

Figure 2: Prediction game with event outcomes y and predictions fi, . . . , fn of
n predictors

How good a prediction fi,t is with respect to the true outcome yt is mea-
sured by help of a loss function ℓ, which is a monotonically increasing function
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with the arguments fi,t and yt that is convex. The so-called natural loss is, e.g.,
the absolute difference between fi,t and yt. The quadratic loss consists in the
squared difference of these two values, etc. Based on such a loss function, we
can define the success of a prediction method fi up to a specific event or round
t as the average of the inverse of the loss (1 − ℓ) up to round t:

Success.

succ(Fi, t) =

t
∑

u=1
1 − ℓ( fi,u, yu)

t

Given a prediction game G with a prediction method Fi and the predictions fi,
succ(Fi, t) expresses how well Fi scored on average until round t in predicting
fi,1, . . . , fi,t given the true event outcomes y1, . . . , yt. The higher succ(Fi, t), the
better the prediction method is. [66]

Now, in vindicating induction, one aims to show that employing induc-
tion is the best thing one can do, because by doing so one scores, at least in
the long run, best among all the competitors of such a prediction game. The
theory of meta-induction fleshes out this idea by defining a meta-prediction
method, which takes for each prediction round t of a prediction game G as in-
put the success of all the predictors F1, . . . , Fn up to round t − 1, and makes a
prediction for round t by help of success-based weighting of the predictions
f1,t, . . . , fn,t. Such a meta-inductive predictor Fmi predicts fmi,t for each round t.
And the weights used for this predictions might be, e.g., a normalisation of the
difference of the successes in the exponent (many more other meta-inductive
prediction methods are studied in Schurz 2019):

Meta-Inductive Weights.

w(Fi, t) =
e
√

8·ln(n)·(t−1)·(succ(Fi ,t−1)−succ(Fmi ,t−1))

n
∑

j=1
e
√

8·ln(n)·(t−1)·(succ(Fj ,t−1)−succ(Fmi ,t−1))

Given these weights, the meta-inductive prediction consists simply in linear
weighting the predictions f1,t, . . . , fn,t for round t based on the weights calcu-
lated for the respective prediction methods’ successes until round t − 1:

Meta-Inductive Predictions.

fmi,t =
n

∑
i=1

w(Fi, t) · fi,t

Since the prediction of Fmi for round t is based on the successes of the prediction
methods until round t − 1, the meta-inductive prediction can be considered to
be an inductive prediction method. It inductively infers future success from past
success. Also, this way of employing induction is not about the values of the
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event outcomes, but about the successes of other methods, it is a meta-method.
Hence, it is a meta-inductive prediction method.

Now, we cannot go into many details regarding the performance of meta-
induction here, but based on theorems of the machine learning literature, one
can show that the difference between the successes of the predictors F1, . . . , Fn
of G and that of the meta-inductive predictor Fmi is bounded as follows (cf.
Cesa-Bianchi and Lugosi 2006, sect.2.1f; Schurz 2008b, sect.7; and the proof
in the appendix of Feldbacher-Escamilla 2020; and a slight generalisation in
Feldbacher-Escamilla and Schurz 2020):

Theorem about Meta-Inductive Success Bounds.
Given the underlying loss function ℓ (which is used for defining
succ) is convex, it holds:

succ(Fi, t)− succ(Fmi, t) ≤
√

const · ln(n)/t (∀i ∈ {1, . . . , n})

This bound (const is just a particular constant number) is of particular interest,
because it shows that the difference between the success rates grows at most
sublinearly with t for the meta-inductivist. This means that in the long run, i.e.
in the limit, the meta-inductive method cannot be outperformed by any other
predictor of the prediction game G. [67] In other words, meta-induction is long
run optimal in comparison to any prediction method of G:

Meta-Inductive Optimality.

lim
t→∞

succ(Fi, t)− succ(Fmi, t) ≤ 0 (∀i ∈ {1, . . . , n})

It is important to note that this is an analytic result about how we defined
Fmi and that this holds for any sequence y1, y2, . . . of event outcomes. So, even
if the event series in question is not predictable in the sense of Reichenbach,
meta-inductive predictions are still long run optimal and in this sense perform-
ing meta-inductive predictions is the best one can do. So, we have some form
of a priori or deductive justification of meta-induction.

Now, given the meta-inductive optimality result, one can provide also a
justification for classical (object-)induction. The general form of reasoning is as
follows: As the above-cited result shows, meta-induction for a weighted selec-
tion of predictions of any accessible method is proven to be optimal in the long
run. If we take for granted the past success of classical inductive methods—
something that is clearly a contingent and a posteriori matter of fact and also
not scrutinised by Hume himself (cf. Howson 2003, p.4)—it follows that a meta-
inductive selection of such classical inductive methods for predictions of future
events is guaranteed to be long run optimal. This holds at least as long as there
are no alternative methods in G that outperform classical inductive methods.
And since, at least up to now, classical inductive methods of science outper-
formed any other prediction method, our use of them is a posteriori justified.

Having outlined the meta-inductive framework and how it is employed to
justify induction, we want to show how this approach can be also employed to
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justify abductive reasoning in the sense of an inference to the probabilistically
best prediction in next section.

2.6 Meta-Abduction: Inference to the Probabilistically Best
Prediction

In this section, we apply the theory of meta-induction in order to show how
not only induction, but also a species of abduction can be justified. For this
purpose, we need to show how abduction in the sense of an inference to
the probabilistically best prediction can be embedded into the meta-inductive
framework—resulting in a theory of meta-abduction—and then outline how
the optimality result of meta-induction can be also employed to argue for the
optimality of this kind of abduction.

Given the epistemic relevance of simplicity as outlined above, how should
we select among hypotheses, explanations, theories? According to probabilis-
tic selective abduction (AIC-Abd), we should try to maximise the information
theoretical balance between accuracy (Pr(P|C)) and simplicity (c(C)). [68] By
choosing that hypothesis, explanation or theory which has the best balance, we
will be closest to the truth, which might be different from being closest to the
data P (see Forster and Sober 1994, p.6). So, given the epistemic aim of being
close to the truth, (AIC-Abd) seems to be an optimal means to achieve this end.
However, this is with respect to explanation. What about predictions? What
about choosing the best balanced hypothesis or theory for prediction?

The theory of meta-induction can be applied for optimising predictions in
any respect, as long as the formal conditions of the framework are satisfied. In
our application to Hume’s problem of induction we interpreted the framework
plainly epistemically: Given a prediction game G with Y and F, we interpreted
Y as the truth and F as prediction methods or hypotheses about the truth.
However, we can also take in a more pragmatic standpoint and interpret Y

as past, present, and future data, and F as prediction methods or hypotheses
about which data will be gathered in the future. Since data typically contains
error and noise, it easily falls apart from the truth, hence this interpretation
does not coincide with the former. And in this sense it seems to be perfectly fine
that also the criteria for success fall apart: Epistemically speaking, we still aim
at predictions that are as closest to the truth as possible. However, given our
noisy data, we know that we need to aim at predictions that are best balanced
between accuracy (fitting) and complexity (overfitting). Success consists not
in minimising the distance from the data, but making a prediction which is
best balanced between these two parameters. So, in order to achieve this goal
in the long run, the idea is to use a normalisation of (AIC). If r is the highest
polynomial we are going to consider and Pr is ϵ-regular (i.e. only Pr(⊥) = 0
and all other probabilities are > ϵ > 0), then AIC(C, P) ∈ [log(ϵ) − r,−r].
Hence, we can normalise AIC(C, P) to [0, 1] by taking

AIC(C, P)− (log(ϵ)− r)
− log(ϵ)
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which is in [0, 1].
Now, let us consider a prediction game G with Y, F. Let G be about pre-

dicting the best balancing for making explanations or predictions. Assume that
Y is a series of objectively best balancing. This will still fall apart from pro-
viding a most accurate prediction, i.e. a true prediction, because the degree of
an extension of a polynomial predicting up to round t − 1 might be increased
by 1 if one predicts for round t the true value with probability 1, whereas it
might not be increased at all by predicting the true value with close to 1 prob-
ability and hence deviation from the truth might have a higher AIC (the AIC
is higher, if the deviation allows for no change in the degree of the polynomial
and the basis of the logarithm in equation (AIC) is > 1/(1 − Pr(P|C))). Given
such an “objective” best balancing, we can interpret F as a set of theories or
hypotheses which provide predictions of what will be the best balance once
new data enters the game (i.e. once one moves forward to the next round). We
take the predictions in F to be the actual AICs of the same methods in predict-
ing some event in another prediction game, let us say G′. [69] So, if for f ′i ∈ F′,
AIC( f ′i , {Y1, . . . , Yt−1}) = a, then the respective fi ∈ F predicts for round t as

best balance the normalisation of a, i.e. a−(log(ϵ)−r)
− log(ϵ) . G is, so to say, a meta game

where any prediction method of the ordinary game G′ predicts that it has the
right balance for future predictions. In other words, playing G′ and making
predictions comes with the commitment of claiming also that one’s prediction
is right in the sense of best balanced—that is a claim in G.

Now, again by success-based mixing of the forecasts about the best bal-
ance to be expected, a meta-inductive learner achieves long run optimality in
predicting the best balance in G. If we assume, e.g., that in science creative ab-
ductive methods as hinted at in the introduction with high unificatory power
had the best balance in the past, then using such creative abduction for infer-
ring theoretical frameworks is epistemically justified, since using them is, at the
current state of science, the best thing to do: Following the meta-inductive (or
better: meta-abductive) selection allows for optimality in predicting the best
balance in G (and actually having the best balance in one’s events predictions
in G′).

Note that given this assumption, anti-abduction fails—which would be to
get the worst possible balance of accuracy and simplicity—to be justified: Dis-
unification and theoretically laden hypothesis invention fared suboptimal in
past (in G′) and hence its predictions of the best balance in G were also wrong.
Hence, meta-inductive selection ignores these methods and this is the best
thing to do, at least given their past performance. Given this assumption, anti-
abduction is by far no optimal means to achieve the epistemic end of being best
balanced in G.

Another note is in place: In the argument above, we implicitly made the as-
sumption that success in the meta game G and success in G′ are synchronous:
Whenever one was relatively successful in choosing the right balance for the-
ory and hypothesis invention (G), one was also likewise successful in predict-
ing events (G′). The problem with this assumption is that in principle nothing
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hinders an adversary in letting fall things apart from each other. So, in prin-
ciple one could allow for a method performing good in G′, but at the same
time failing in G. However, we can argue for our assumption of a parallel de-
velopment of G and G′ by hinting at or assuming a past correlation between
abductive theory building and predictive success, and then employ induction
as we justified by help of meta-induction in the preceding section. By this we
can inductively transfer this correlation of the past also to the future. And we
are epistemically justified in doing so.

Finally, we should also mention that such an approach of meta-abduction
as outlined here can be considered more generally as introducing cognitive
costs in prediction games. General features of introducing cognitive costs are
studied, e.g., in (Schurz 2019, sect.7.6). [70]

2.7 Conclusion

To briefly sum up: In this essay we have provided a taxonomy of abductive
inferences (in the wide sense) and an exact characterisation of a species of se-
lective abduction, which aims at inferring the probabilistically best hypothesis,
explanation or theory on the basis of data; the two main relevant factors in do-
ing so are likelihood of the data given the inferred hypotheses and simplicity of
the hypotheses, where simplicity was used as a proxy for many other explana-
tory virtues such as scope, non-ad hocness, unification; we have provided an
argument for the epistemic value of simplicity and have shown how inferences
of explanations based on these factors are justified. Finally, we have introduced
the framework of meta-induction, outlined its justification of induction, and
have also sketched how abductive inferences regarding predictions can be justi-
fied by employing the framework of meta-induction.
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